Skip to main content

Section 3 Reading

References References

[1]
  
M. Abate, The Julia-Wolff-Carathéodory theorem in polydisks, J. Anal. Math. 74 (1998), 275-306.
[2]
  
J. Agler, J.E. M\McC Carthy, and M. Stankus, Toral algebraic sets and function theory on polydisks, J. Geom. Anal. 16 (2006), 551-562.
[3]
  
J. Agler, J.E. M\McC Carthy, and N.J. Young, A Carathéodory theorem for the bidisk via Hilbert space methods, Math. Ann. 352 (2012), 581-624.
[4]
  
L. Arosio and P. Gumenyuk, Valiron and Abel equations for holomorphic self-maps of the polydisc, Internat. J. Math. 27 (2016), 1650034.
[5]
  
A. Beardon, Iteration of rational functions. Graduate Texts in Mathematics 132, Springer-Verlag, New York. 1991.
[7]
  
K. Bickel, G. Knese, J.E. Pascoe, and A. Sola, Local theory of stable polynomials and bounded rational functions of several variables, preprint 2021.
[8]
  
K. Bickel, J.E. Pascoe, and A. Sola, Derivatives of rational inner functions: geometry of singularities and integrability at the boundary, Proc. London Math. Soc. 116 (2018), 281-329.
[9]
  
K. Bickel, J. E. Pascoe, and A. Sola, Level curve portraits of rational inner functions, Ann. Sc. Norm. Sup. Pisa Cl. Sc. XXI (2020), 451-494.
[10]
  
K. Bickel, J. E. Pascoe, and A. Sola, Singularities of rational inner functions in higher dimensions, Amer. J. Math., to appear.
[11]
  
L. Carleson and T.W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
[12]
  
H. Cartan, Les fonctions de deux variables complexes. L'itération des transformations intérieures d'un domaine borné (French), Math. Z. 35 (1932), 760-773.
[13]
  
J.E. Fornaess, Dynamics in several complex variables. CBMS Regional Conference Series in Mathematics, 87. Providence, RI, 1996.
[14]
  
C. Frosini, Dynamics on bounded domains, in: The \(p\)-harmonic equation and recent advances in analysis, 99-117, Contemp. Math. 370 Amer. Math. Soc., Providence, RI, 2005.
[15]
  
M. Hervé, Sur l'itération des transformations analytiques dans le bicercle unité, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), 1-28.
[16]
  
M. Jonsson, Dynamics of polynomials skew-products on \(\mathbb{C}^2\text{,}\) Math. Ann. 314 (1999), 403-447.
[17]
  
G. Knese, Polynomials defining distinguished varieties, Trans. Amer. Math. Soc. 362 (2010), 5635-5655.
[18]
  
G. Knese, Integrability and regularity of rational functions, Proc. London. Math. Soc. 111 (2015), 1261-1306.
[19]
  
J. Milnor, Dynamics in one complex variable. Annals of Mathematics Studies 160, Princeton Univ. Press, Princeton, NJ, 2006.
[20]
  
J. Nowell, Denjoy-Wolff sets for analytic maps on the polydisk, PhD Thesis, University of Florida, 2019.
[21]
  
H. Peters and J. Raissy, Fatou components of elliptic polynomial skew-products, Ergodic Theory Dynam. Systems 39 (2019), 2235-2247.
[22]
  
E.R. Pujals and R.K.W. Roeder, Two-dimensional Blaschke products: degree growth and ergodic consequences, Indiana Univ. Math. J. 59 (2010), 301-325.
[23]
  
E.R. Pujals and M. Shub, Dynamics of two-dimensional Blaschke products, Ergodic Theory Dynam. Systems 28 (2008), 575-585.
[24]
  
W. Rudin, Function Theory in polydisks, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[25]
  
N. Sibony, Dynamique des applications rationelles de \(\mathbf{P}^k\text{.}\) (French) Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthéses 8, Soc. Math. France, Paris, 1999.
[26]
  
J. Slipantschuk, O.F. Bandtlow, and W. Just, Complete spectral data for analytic Anosov maps of the torus, Nonlinearity 30 (2017), 2667-2686.
[27]
  
R. Tully-Doyle, Analytic functions on the bidisk at boundary singularities via Hilbert space methods, Oper. Matrices 11 (2017), 55-70.