Skip to main content
Hilbert Spaces - Sequel to Linear Algebra
Ryan Tully-Doyle
Contents
Search Book
close
Search Results:
No results.
Prev
Up
Next
\(\DeclareMathOperator{\RE}{Re} \DeclareMathOperator{\IM}{Im} \DeclareMathOperator{\ess}{ess} \DeclareMathOperator{\intr}{int} \DeclareMathOperator{\dist}{dist} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\diag}{diag} \DeclareMathOperator{\cl}{cl} \DeclareMathOperator{\spn}{span} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator\trace{trace} \DeclareMathOperator\re{\mathrm {Re~}} \DeclareMathOperator\im{\mathrm {Im~}} \newcommand\dd{\mathrm d} \newcommand{\eps}{\varepsilon} \newcommand{\To}{\longrightarrow} \newcommand{\hilbert}{\mathcal{H}} \newcommand{\s}{\mathcal{S}_2} \newcommand{\A}{\mathcal{A}} \newcommand\h{\mathcal{H}} \newcommand{\J}{\mathcal{J}} \newcommand{\K}{\mathcal{K}} \newcommand{\M}{\mathcal{M}} \newcommand{\F}{\mathbb{F}} \newcommand{\N}{\mathcal{N}} \newcommand{\L}{\mathcal{L}} \newcommand{\T}{\mathbb{T}} \newcommand{\W}{\mathcal{W}} \newcommand{\X}{\mathcal{X}} \newcommand{\D}{\mathbb{D}} \newcommand{\C}{\mathbb{C}} \newcommand{\BOP}{\mathbf{B}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\BH}{\mathbf{B}(\mathcal{H})} \newcommand{\KH}{\mathcal{K}(\mathcal{H})} \newcommand{\pick}{\mathcal{P}_2} \newcommand{\schur}{\mathcal{S}_2} \newcommand{\R}{\mathbb{R}} \newcommand{\Complex}{\mathbb{C}} \newcommand{\Field}{\mathbb{F}} \newcommand{\RPlus}{\Real^{+}} \newcommand{\Polar}{\mathcal{P}_{\s}} \newcommand{\Poly}{\mathcal{P}(E)} \newcommand{\EssD}{\mathcal{D}} \newcommand{\Lop}{\mathcal{L}} \newcommand{\cc}[1]{\overline{#1}} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\seq}[1]{\left\lt#1\right>} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\essnorm}[1]{\norm{#1}_{\ess}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\ran}[1]{\operatorname{ran}#1} \newcommand{\nt}{\stackrel{\mathrm {nt}}{\to}} \newcommand{\pnt}{\xrightarrow{pnt}} \newcommand{\ip}[2]{\left\langle #1, #2 \right\rangle} \newcommand{\ad}{^\ast} \newcommand{\inv}{^{-1}} \newcommand{\adinv}{^{\ast -1}} \newcommand{\invad}{^{-1 \ast}} \newcommand\Pick{\mathcal P} \newcommand\Ha{\mathbb{H}} \newcommand{\HH}{\Ha\times\Ha} \newcommand\Htau{\mathbb{H}(\tau)} \newcommand{\vp}{\varphi} \newcommand{\ph}{\varphi} \newcommand\al{\alpha} \newcommand\ga{\gamma} \newcommand\de{\delta} \newcommand\ep{\varepsilon} \newcommand\la{\lambda} \newcommand\up{\upsilon} \newcommand\si{\sigma} \newcommand\beq{\begin{equation}} \newcommand\ds{\displaystyle} \newcommand\eeq{\end{equation}} \newcommand\df{\stackrel{\rm def}{=}} \newcommand\ii{\mathrm i} \newcommand{\vectwo}[2] { \begin{pmatrix} #1 \\ #2 \end{pmatrix} } \newcommand{\vecthree}[3] { \begin{pmatrix} #1 \\ #2 \\ #3 \end{pmatrix} } \newcommand\blue{\color{blue}} \newcommand\black{\color{black}} \newcommand\red{\color{red}} \newcommand\nn{\nonumber} \newcommand\bbm{\begin{bmatrix}} \newcommand\ebm{\end{bmatrix}} \newcommand\bpm{\begin{pmatrix}} \newcommand\epm{\end{pmatrix}} \numberwithin{equation}{section} \newcommand\nin{\noindent} \newcommand{\nCr}[2]{\,_{#1}C_{#2}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Preface
1
Introduction
1.1
Motivation
1.2
Inner products
1.3
Basis and coordinates
1.4
Operators
2
Inner product spaces
2.1
Inner products and
\(\ell^2\)
2.2
Inner products, norms, and metric spaces
2.3
Examples of inner product spaces
2.4
Exercises
2.4
Exercises
3
Normed spaces
3.1
Norms
3.2
Closed linear subspaces
3.3
Exercises
3.3
Exercises
4
Hilbert and Banach spaces
4.1
Limits
4.2
\(L^2[a,b]\)
4.3
The closest point property
4.4
Exercises
4.4
Exercises
5
Orthogonal expansions
5.1
Geometry in Hilbert space
5.2
Bessel’s inequality
5.3
Modes of convergence
5.4
Complete orthonormal sequences
5.5
Orthogonal complements
5.6
Exercises
5.6
Exercises
6
Fourier Series
6.1
Convolution
6.2
The Fejér kernel
6.3
Convergence of classical Fourier series
6.4
Exercises
6.4
Exercises
7
Dual spaces
7.1
Linear functionals
7.2
The Riesz representation theorem
7.3
Exercises
8
Linear operators
8.1
Linear operators
8.2
Inverses
8.3
Adjoint operators
8.4
Hermitian operators
9
Appendix: Results from analysis
9.1
Results from real analysis
9.2
Results from complex analysis
Section
9.2
Results from complex analysis
Eventually necessary things will go here.