Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\DeclareMathOperator{\RE}{Re}
  \DeclareMathOperator{\IM}{Im}
  \DeclareMathOperator{\ess}{ess}
  \DeclareMathOperator{\intr}{int}
  \DeclareMathOperator{\dist}{dist}
  \DeclareMathOperator{\dom}{dom}
  \DeclareMathOperator{\diag}{diag}
  \DeclareMathOperator{\rank}{rank}
  \DeclareMathOperator{\col}{col}
  \DeclareMathOperator{\cl}{cl}
  \DeclareMathOperator{\row}{row}
  \DeclareMathOperator{\proj}{proj}
  \DeclareMathOperator{\ball}{ball}
  \DeclareMathOperator{\gd}{grad}
  \DeclareMathOperator{\Log}{Log}
  \DeclareMathOperator{\Arg}{Arg}
  \DeclareMathOperator\re{\mathrm {Re~}}
  \DeclareMathOperator\im{\mathrm {Im~}}
  
  \newcommand{\eps}{\varepsilon}
  \newcommand{\To}{\longrightarrow}
  \newcommand{\hilbert}{\mathcal{H}}
  \newcommand{\s}{\mathcal{S}_2}
  \newcommand{\A}{\mathcal{A}}
  \newcommand\h{\mathcal{H}}
  \newcommand{\J}{\mathcal{J}}
  \newcommand{\F}{\mathbb{F}}
  \newcommand{\K}{\mathcal{K}}
  \newcommand{\N}{\mathcal{N}}
  \newcommand{\T}{\mathbb{T}}
  \newcommand{\W}{\mathcal{W}}
  \newcommand{\X}{\mathcal{X}}
  \newcommand{\Y}{\mathcal{Y}}
  \newcommand{\D}{\mathbb{D}}
  \newcommand{\C}{\mathbb{C}}
  \newcommand{\BOP}{\mathbf{B}}
  \newcommand{\Z}{\mathbb{Z}}
  \newcommand{\BH}{\mathbf{B}(\mathcal{H})}
  \newcommand{\KH}{\mathcal{K}(\mathcal{H})}
  \newcommand{\pick}{\mathcal{P}_2}
  \newcommand{\schur}{\mathcal{S}_2}
  \newcommand{\R}{\mathbb{R}}
  \newcommand{\Complex}{\mathbb{C}}
  \newcommand{\Field}{\mathbb{F}}
  \newcommand{\RPlus}{\Real^{+}}
  \newcommand{\Polar}{\mathcal{P}_{\s}}
  \newcommand{\Poly}{\mathcal{P}(E)}
  \newcommand{\EssD}{\mathcal{D}}
  \newcommand{\Lop}{\mathcal{L}}
  \newcommand{\cc}[1]{\overline{#1}}
  \newcommand{\abs}[1]{\vert#1\vert}
  \newcommand{\set}[1]{\left\{#1\right\}}
  \newcommand{\seq}[1]{\left\lt#1\right>}
  \newcommand{\norm}[1]{\left\Vert#1\right\Vert}
  \newcommand{\essnorm}[1]{\norm{#1}_{\ess}}
  \newcommand{\tr}{\operatorname{tr}}
  \newcommand{\ran}[1]{\operatorname{ran}#1}
  \newcommand{\nt}{\stackrel{\mathrm {nt}}{\to}}
  \newcommand{\pnt}{\xrightarrow{pnt}}
  \newcommand{\ip}[2]{\left\langle #1, #2 \right\rangle}
  \newcommand{\ad}{^\ast}
  \newcommand{\inv}{^{-1}}
  \newcommand{\adinv}{^{\ast -1}}
  \newcommand{\invad}{^{-1 \ast}}
  \newcommand\Pick{\mathcal P}
  \newcommand\Ha{\mathbb{H}}
  \newcommand{\HH}{\Ha\times\Ha}
  \newcommand\Htau{\mathbb{H}(\tau)}
  \newcommand{\vp}{\varphi}
  \newcommand{\ph}{\varphi}
    \newcommand{\vtheta}{\vartheta}
  \newcommand\al{\alpha}
  \newcommand\ga{\gamma}
  \newcommand\de{\delta}
  \newcommand\ep{\varepsilon}
  \newcommand\la{\lambda}
  \newcommand\up{\upsilon}
  \newcommand\si{\sigma}
  \newcommand\beq{\begin{equation}}
  \newcommand\ds{\displaystyle}
  \newcommand\eeq{\end{equation}}
  \newcommand\df{\stackrel{\rm def}{=}}
  \newcommand\ii{\mathrm i}
  \newcommand\net[1]{\langle #1 \rangle}
  \newcommand{\vectwo}[2]
  {
     \begin{pmatrix} #1 \\ #2 \end{pmatrix}
  }
  \newcommand{\vecthree}[3]
  {
     \begin{pmatrix} #1 \\ #2 \\ #3 \end{pmatrix}
  }
  \newcommand\blue{\color{blue}}
  \newcommand\black{\color{black}}
  \newcommand\red{\color{red}}
  
  \newcommand\nn{\nonumber}
  \newcommand\bbm{\begin{bmatrix}}
  \newcommand\ebm{\end{bmatrix}}
  \newcommand\bpm{\begin{pmatrix}}
  \newcommand\epm{\end{pmatrix}}
  \numberwithin{equation}{section}
  \newcommand\nin{\noindent}
  \newcommand{\nCr}[2]{\,_{#1}C_{#2}} 
  \newcommand{\ps}{\displaystyle \sum_{n=0}^\infty a_n x^n}
  \newcommand{\psg}{\displaystyle \sum_{n=0}^\infty b_n x^n}
  \newcommand{\hz}{\,\mathrm{Hz}}
  \newcommand{\dd}{^\prime}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section  1.7  Exercises 2 
 
Exercises    Exercises 
 
1.   
Let \(f(z) = (z-1)/(z+1)\text{.}\)  Find the image under \(f\)  of the following sets:
the real line;
 
the imaginary axis
 
the unit circle;
 
the circle centered a 0 with radius 2;
 
 
 2.   
Is the image of a triangle under a conformal map a triangle? Why or why not? How about on the sphere? (What is a “triangle” on a sphere?)
3.   
Let \(f(z) = (z- i)/(z+i)\text{.}\)  Find the image under \(f\)  of the following sets:
the real line;
 
the imaginary axis
 
the unit circle;
 
the circle centered a 0 with radius 2;
 
the triangle with vertices \(0, i, 1+i \in \C\text{.}\) 
 
 
 4.   
Find a linear fractional transform that takes the unit disk to the right half plane with \(f(0) = 2\text{.}\) 
5.   
Find a linear fractional transform that takes the unit disk to itself and maps \(1/2\)  to \(1/3\text{.}\) 
6.   
Determine the image of the unit disk under the map \(f(z) = \frac{z+1}{3z + 1}\text{.}\)  Where is the image of the real axis? What about the imaginary axis?
7.   
Find a conformal map taking the quarter of unit disk in the first quadrant to the entire unit disk. Hint: \(f(z) = z^4\)  isn't good enough. Why? Can you do it with a bijective conformal map?
8.   
Show that a composition of two linear fractional maps is a linear fractional map.