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The functional calculus

Let f:(a,b) = R.

Given a self-adjoint matrix A with spectrum in (a, b) diagonalized by a unitary
matrix U, that is,

we define the expression f(A) via the following formula.

f(A) 0 ...
fay=u| 0 ) - |y
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Matrix inequalities

Let A and B be self-adjoint matrices:
o Wesay A< B if B— Ais positive semi-definite.
o Wesay A< B if B— A'is positive definite.

A positive definite matrix is a self-adjoint matrix with positive eigenvalues, and a
positive semi-definite matrix is a self-adjoint matrix with nonnegative eigenvalues.
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Special matrix functions

Let f:(a,b) = R.
o f is matrix monotone if, for any natural number n € N, and any pair of n
by n self-adjoint matrices A and B with spectrum in (a, b),

A< B= f(A) < f(B).

@ f is matrix convex whenever f evaluated on n by n matrices via the matrix
functional calculus is a matrix-valued convex function. That is,

] (A; B> NG) Z f(B)

for all A, B with spectrum in (a, b).
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Classical representations: Lowner-Nevanlinna

Let I denote the complex upper half plane. A Pick function is an analytic map
f:N—Tn.

Theorem (Lowner's theorem)

A function f : (a, b) — R is matrix monotone if and only if f analytically
continues to a Pick function f : T U (a, b) — I.
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Classical representations: Lowner-Nevanlinna

Let I denote the complex upper half plane. A Pick function is an analytic map
f:N—Tn.

Theorem (Lowner's theorem)

A function f : (a, b) — R is matrix monotone if and only if f analytically
continues to a Pick function f : T U (a, b) — I.

Theorem (Nevanlinna's representation)

f is a Pick function if and only if there exist a € R, b > 0, and a positive finite
Borel measure p with [ ﬁdu < oo such that for all z € Tl

1 t

=z @1 o)

f(z):éJ—sz-i-/]R

Moreover, a, b, i are uniquely determined by f.
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Classical representations: Kraus

Theorem (Kraus 1937)

Let f: (—1,1) — R. f is matrix convex if and only if

2

du(t)

1) =a+bx+ [
(X) a X [71’1] 1 + tx

where a, b € R and p is a finite measure supported on [—1,1]. Note that all such

functions analytically continue to the upper half plane.
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A circle of ideas

4o

4

f is matrix monotone on (a, b)

f can be approximated uniformly with smooth functions that
preserve properties of f (mollifiers)

fis Ct

f has an infinitely differentiable integral representation against a
probability measure v

f is real analytic

The resulting integral representation of f analytically continues to
a Pick function.
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Automatic real analyticity

Lowner and Kraus theorems are example of what we might call a automatic real
analyticity theorem —

matrix monotone = real analytic representation

= analytic continuation to Pick function
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Automatic real analyticity

Lowner and Kraus theorems are example of what we might call a automatic real
analyticity theorem —

matrix monotone = real analytic representation

= analytic continuation to Pick function

boundary inequality preservation = real analytic structure
=- complex analytic continuation
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Lots of realization/representation analogues to classical theorems in the nc
setting. Samples we drew on

@ Nevanlinna representations (Agler-T.D.-Young '16, Pascoe-T.D. '17)
o Kraus-type representations (Helton-McCullogh-Vinnikov '06)
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Q: Does this heuristic generalize?

Lots of realization/representation analogues to classical theorems in the nc
setting. Samples we drew on

@ Nevanlinna representations (Agler-T.D.-Young '16, Pascoe-T.D. '17)
o Kraus-type representations (Helton-McCullogh-Vinnikov '06)

Evidence that an automatic analyticity approach might be achievable for
noncommutative functions.
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The matrix universe

We define the matrix universe to be:
M? = M, (C),

where M,(C)? is d-tuples of n by n matrices.
We define the real matrix universe to be:

S?=Js.(C),

where S,(C)? is the set of d-tuples of n by n Hermitian matrices.
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Noncommutative sets

Free set D C M:
Q@ X,YeD=XapYeD
@ X implies U*XU € D whenever U is unitary.

Examples: tuples of contractions, tuples of commuting contractions, block 2 by 2
self-adjoint contractions, etc.

We say D is (open, connected, convex) whenver each D N M,(C) is (open,
connected, convex.)
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Noncommutative functions

Let D be a free set. We define a (real) noncommutative function 7 : D — M
to satisfy

Q f(XaY)=Ff(X)af(Y)
Q f(U*XU) = U*f(X)U whenever U is unitary.
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Noncommutative functions

Let D be a free set. We define a (real) noncommutative function 7 : D — M
to satisfy

Q f(XaY)=Ff(X)af(Y)
Q f(U*XU) = U*f(X)U whenever U is unitary.

Examples: matrix exponential, matrix logarithm, matrix square root,
noncommutative polynomials, rational functions, power series.
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Butterfly realization - a Kraus theorem

Theorem (Helton, McCullough, Vinnikov '06)

Let r: G Cc 8¢ — S denote a noncommutative rational function on a domain G
containing 0. If r is matrix convex near 0, then r has a realization of the form

r(X) = ro + L(X) + A(X)*(1 = T(X))IA(X)

for a scalar ry, a real linear function L, N\ affine linear, and T'(X) = >" A; ® X; for
self-adjoint matrices A;.

N\
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Theorem (Helton, McCullough, Vinnikov '06)

Let r: G Cc 8¢ — S denote a noncommutative rational function on a domain G
containing 0. If r is matrix convex near 0, then r has a realization of the form

r(X) = ro + L(X) + A(X)*(1 = T(X))IA(X)

for a scalar ry, a real linear function L, N\ affine linear, and T'(X) = >" A; ® X; for
self-adjoint matrices A;.

N\

2

f(x):a+bx+/ du(t)

[_171] 1 + tX
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A royal proof

What structural features appear in the proofs of automatic analyticity theorems?
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A royal proof

What structural features appear in the proofs of automatic analyticity theorems?
@ Structured domains
@ Local boundedness

@ Controlled analyticity on 1 dimensional slices - local domination by
derivatives, e.g.

Amenability to approximation - closure under convolution, e.g.
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A royal proof: dominions

A dominion is a set of domains, G, in RY satisfying:
o Translation invariance: Forall GeGand reR?, G+reg.
@ Scale invariance: If t >0 and G € G, tG € G.
@ Closure under intersection: For all G, He G, GNH € 4.
e Locality: For any x € RY and € > 0, Bg(x,¢) € G.
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A royal proof: dominions

A dominion is a set of domains, G, in RY satisfying:
o Translation invariance: Forall GeGand reR?, G+reg.
@ Scale invariance: If t >0 and G € G, tG € G.
@ Closure under intersection: For all G, He G, GNH € 4.
e Locality: For any x € RY and € > 0, Bg(x,¢) € G.

The class of convex sets in R? is an example of a dominion, as is the class of all
open sets in RY.
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A royal proof: sovereign classes

A sovereign class F is a set of functions on domains contained in a dominion G
satisfying:
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A royal proof: sovereign classes

A sovereign class F is a set of functions on domains contained in a dominion G
satisfying:

(] FunCtIOI‘IS: Forall G € G, F(G) is a set of locally bounded measurable functions.

@ Closure under localization: s c 7(c)and H C G then |,y € F(H).

@ Closure under convolution: The st of functions F(G) is convex and closed under pointwise weak limits.

o Local boundedness: exhrc 7is locally bounded and ble on finite dimensional affine sub on each level.

(] One variable knowledge: If aj < bj for each i, then f(t) := f (%a + %b) analytically continues to ID as a
function of t.

@ Control trereisa map ~ taking each pair (x, f) to a non-negative number satisfying

o For each € > 0 there is a universal constant c(e) such that i"fXEBR(X,E) ~(x, f) < c(e) Hf”BR(X,E)'
@ There is a universal positive valued function e on R satisfying the following. Write £5(t) = X ant”. Then,

HanH < v(x, fle(llb — al|).
H'C Gand x € H then v (x, fly) < 7(x, f).
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Royal road theorem

Theorem (Pascoe-T.D. 2019)

Every function in a sovereign class is real analytic.

Essentially forced by choosing the correct axioms.
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Royal road theorem

Theorem (Pascoe-T.D. 2019)

Every function in a sovereign class is real analytic.

Essentially forced by choosing the correct axioms.
In Pascoe-T.D. 2020 (Regal Path), a simplified set of axioms can be used to extract a

proof of the commutative Léwner theorem (Agler-McCarthy-Young 2012 and Pascoe
2018) from the noncommutative theorem (Pascoe-T.D. 2016, Palfia 2020, Pascoe 2019)
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A road to realizations

Define the positive-orthant norm of the n-th derivative at X by

ID"f(X)|l+ = sup  [[D"F(X®™)[H]]|.
HlI=1,H>0,m

If the n-th derivative does not exist in some positive direction, we formally set
ID"F(X)]]+ = oc.
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A road to realizations

Define the positive-orthant norm of the n-th derivative at X by

ID"f(X)|l+ = sup  [[D"F(X®™)[H]]|.
HlI=1,H>0,m

If the n-th derivative does not exist in some positive direction, we formally set
ID"F(X)]]+ = oc.

Matrix monotone functions are a sovereign class. I

Controlled by

VX ) = [[FXO)N + [IDFX)] -

Matrix convex functions are a sovereign class. I

V(X £) = [IFON + IDF(X)II + || D*F(X

-
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The butterfly realization

Theorem (P.-Tully-Doyle '19)

Let f be a locally bounded matrix convex function defined on some matrix convex
set of self adjoints containing 0. There are self-adjoint T;, vector Q;, a scalar ag,
and a linear function L such that

F(X)=a0+ LX)+ O QX) (1 =Y TiX) (O QiXi).
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The butterfly realization

Theorem (P.-Tully-Doyle '19)

Let f be a locally bounded matrix convex function defined on some matrix convex
set of self adjoints containing 0. There are self-adjoint T;, vector Q;, a scalar ag,
and a linear function L such that

F(X)=a0+ LX)+ O QX) (1 =Y TiX) (O QiXi).

The minimal such realization is essentially unique.
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Thank you!
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