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The functional calculus

Let f : (a, b)→ R.
Given a self-adjoint matrix A with spectrum in (a, b) diagonalized by a unitary
matrix U, that is,

A = U∗

λ1 0 . . .
0 λ2 . . .
...

...
. . .

U

we define the expression f (A) via the following formula.

f (A) = U∗

f (λ1) 0 . . .
0 f (λ2) . . .
...

...
. . .

U.
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Matrix inequalities

Let A and B be self-adjoint matrices:

We say A ≤ B if B − A is positive semi-definite.

We say A < B if B − A is positive definite.

A positive definite matrix is a self-adjoint matrix with positive eigenvalues, and a
positive semi-definite matrix is a self-adjoint matrix with nonnegative eigenvalues.
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Special matrix functions

Let f : (a, b)→ R.
f is matrix monotone if, for any natural number n ∈ N, and any pair of n
by n self-adjoint matrices A and B with spectrum in (a, b),

A ≤ B ⇒ f (A) ≤ f (B).

f is matrix convex whenever f evaluated on n by n matrices via the matrix
functional calculus is a matrix-valued convex function. That is,

f

(
A + B

2

)
≤ f (A) + f (B)

2

for all A,B with spectrum in (a, b).
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Classical representations: Löwner-Nevanlinna

Let Π denote the complex upper half plane. A Pick function is an analytic map
f : Π→ Π.

Theorem (Löwner’s theorem)

A function f : (a, b)→ R is matrix monotone if and only if f analytically
continues to a Pick function f : Π ∪ (a, b)→ Π.

Theorem (Nevanlinna’s representation)

f is a Pick function if and only if there exist a ∈ R, b ≥ 0, and a positive finite
Borel measure µ with

∫
1

t2+1dµ <∞ such that for all z ∈ Π

f (z) = a + bz +

∫
R

1

t − z
− t

t2 + 1
dµ(t).

Moreover, a, b, µ are uniquely determined by f .
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Classical representations: Kraus

Theorem (Kraus 1937)

Let f : (−1, 1)→ R. f is matrix convex if and only if

f (x) = a + bx +

∫
[−1,1]

x2

1 + tx
dµ(t)

where a, b ∈ R and µ is a finite measure supported on [−1, 1]. Note that all such
functions analytically continue to the upper half plane.
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A circle of ideas

f is matrix monotone on (a, b)

⇒ f can be approximated uniformly with smooth functions that
preserve properties of f (mollifiers)

⇒ f is C 1

⇒ f has an infinitely differentiable integral representation against a
probability measure ν

⇒ f is real analytic

⇒ The resulting integral representation of f analytically continues to
a Pick function.
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Automatic real analyticity

Löwner and Kraus theorems are example of what we might call a automatic real
analyticity theorem –

matrix monotone⇒ real analytic representation

⇒ analytic continuation to Pick function

boundary inequality preservation ⇒ real analytic structure

⇒ complex analytic continuation
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Questions

Q: Does this heuristic generalize?

Lots of realization/representation analogues to classical theorems in the nc
setting. Samples we drew on

Nevanlinna representations (Agler-T.D.-Young ’16, Pascoe-T.D. ’17)

Kraus-type representations (Helton-McCullogh-Vinnikov ’06)

Evidence that an automatic analyticity approach might be achievable for
noncommutative functions.
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The matrix universe

We define the matrix universe to be:

Md =
⋃

Mn(C)d ,

where Mn(C)d is d-tuples of n by n matrices.
We define the real matrix universe to be:

Sd =
⋃

Sn(C)d ,

where Sn(C)d is the set of d-tuples of n by n Hermitian matrices.
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Noncommutative sets

Free set D ⊆M:

1 X ,Y ∈ D ⇒ X ⊕ Y ∈ D

2 X implies U∗XU ∈ D whenever U is unitary.

Examples: tuples of contractions, tuples of commuting contractions, block 2 by 2
self-adjoint contractions, etc.

We say D is (open, connected, convex) whenver each D ∩Mn(C) is (open,
connected, convex.)
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Noncommutative functions

Let D be a free set. We define a (real) noncommutative function f : D →M
to satisfy

1 f (X ⊕ Y ) = f (X )⊕ f (Y )

2 f (U∗XU) = U∗f (X )U whenever U is unitary.

Examples: matrix exponential, matrix logarithm, matrix square root,
noncommutative polynomials, rational functions, power series.
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Butterfly realization - a Kraus theorem

Theorem (Helton, McCullough, Vinnikov ’06)

Let r : G ⊂ Sd → S denote a noncommutative rational function on a domain G
containing 0. If r is matrix convex near 0, then r has a realization of the form

r(X ) = r0 + L(X ) + Λ(X )∗(1− Γ(X ))−1Λ(X )

for a scalar r0, a real linear function L, Λ affine linear, and Γ(X ) =
∑

Ai ⊗ Xi for
self-adjoint matrices Ai .

f (x) = a + bx +

∫
[−1,1]

x2

1 + tx
dµ(t)
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A royal proof

What structural features appear in the proofs of automatic analyticity theorems?

Structured domains

Local boundedness

Controlled analyticity on 1 dimensional slices - local domination by
derivatives, e.g.

Amenability to approximation - closure under convolution, e.g.
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A royal proof: dominions

A dominion is a set of domains, G, in Rd satisfying:

Translation invariance: For all G ∈ G and r ∈ Rd , G + r ∈ G.

Scale invariance: If t > 0 and G ∈ G, tG ∈ G.

Closure under intersection: For all G ,H ∈ G, G ∩ H ∈ G.

Locality: For any x ∈ Rd and ε > 0, BR(x , ε) ∈ G.

The class of convex sets in Rd is an example of a dominion, as is the class of all
open sets in Rd .
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A royal proof: sovereign classes

A sovereign class F is a set of functions on domains contained in a dominion G
satisfying:

Functions: For all G ∈ G, F(G) is a set of locally bounded measurable functions.

Closure under localization: If f ∈ F(G) and H ⊆ G then f |H ∈ F(H).

Closure under convolution: The set of functions F(G) is convex and closed under pointwise weak limits.

Local boundedness: Each f ∈ F is locally bounded and measurable on finite dimensional affine subspaces on each level.

One variable knowledge: If ai ≤ bi for each i, then f
ab

(t) := f
(

1−t
2

a + 1+t
2

b
)

analytically continues to D as a

function of t.

Control There is a map γ taking each pair (x, f ) to a non-negative number satisfying

1 For each ε > 0 there is a universal constant c(ε) such that infX∈BR(x,ε) γ(x, f ) ≤ c(ε) ‖f ‖BR(x,ε).

2 There is a universal positive valued function e on R+ satisfying the following. Write f
ab

(t) =
∑

ant
n . Then,

‖an‖ ≤ γ(x, f )e(‖b − a‖).
3 If H ⊆ G and x ∈ H then γ(x, f |H ) ≤ γ(x, f ).
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Royal road theorem

Theorem (Pascoe-T.D. 2019)

Every function in a sovereign class is real analytic.

Essentially forced by choosing the correct axioms.

In Pascoe-T.D. 2020 (Regal Path), a simplified set of axioms can be used to extract a

proof of the commutative Löwner theorem (Agler-McCarthy-Young 2012 and Pascoe

2018) from the noncommutative theorem (Pascoe-T.D. 2016, Palfia 2020, Pascoe 2019)
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A road to realizations

Define the positive-orthant norm of the n-th derivative at X by

‖Dnf (X )‖+ = sup
‖H‖=1,H>0,m

‖Dnf (X⊕m)[H]‖.

If the n-th derivative does not exist in some positive direction, we formally set
‖Dnf (X )‖+ =∞.

Theorem
Matrix monotone functions are a sovereign class.

Controlled by
γ(X , f ) = ‖f (X )‖+ ‖Df (X )‖+ .

Theorem
Matrix convex functions are a sovereign class.

γ(X , f ) = ‖f (X )‖+ ‖Df (X )‖+ +
∥∥D2f (X )

∥∥
+
.
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The butterfly realization

Theorem (P.-Tully-Doyle ’19)

Let f be a locally bounded matrix convex function defined on some matrix convex
set of self adjoints containing 0. There are self-adjoint Ti , vector Qi , a scalar a0,
and a linear function L such that

f (X ) = a0 + L(X ) + (
∑

QiXi )
∗(I −

∑
TiXi )

−1(
∑

QiXi ).

The minimal such realization is essentially unique.
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Thank you!
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