

Enumeration Functions for

Formal Languages

ILAS Session JMM 2026

Ryan Tully-Doyle

Cal Poly, SLO

joint with J. E. Pascoe
(Drexel)

A formal language is a set of
words in an alphabet of symbols.
 ω \mathcal{A}

(Silly)

Example: $\mathcal{A} = \{z\},$

$\mathcal{L} = \text{all words in } z$

$= \{1, z, z^2, z^3, \dots\}$

A formal language is a set of
words in an alphabet of symbols.
 ω \mathcal{A}

(Silly)

Example: $\mathcal{A} = \{z\},$

$\mathcal{L} = \text{all words in } \mathcal{A}$

$= \{1, z, z^2, z^3, \dots\}.$

Enumeration Functions

The function $f(z) = 1 + z + z^2 + z^3 + \dots$ has every word in \mathcal{J} as a monomial term.

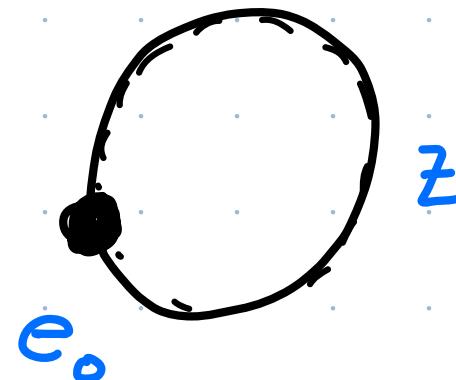
$$f(z) = \sum_{w \in \mathcal{J}} w = 1 + z + z^2 + z^3 + \dots$$

enumerates \mathcal{J} . or

f is the enumeration function for \mathcal{J} .

Graphical View

Consider walks on the weighted graph



walk length: weight

0

1

e_0

1

z

$e_0 \xrightarrow{z} e_0$

2

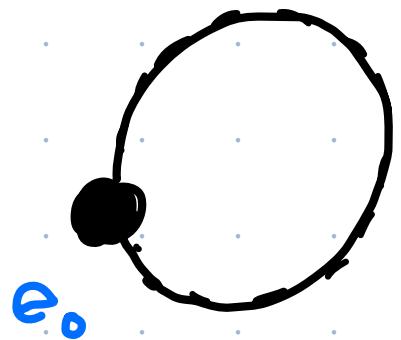
z^2

$e_0 \xrightarrow{z} e_0 \xrightarrow{z} e_0$

walk

generating function: $1 + z + z^2 + z^3 + \dots$

graph



\mathbb{Z}

walk generating function

$$f(z) = 1 + z + z^2 + z^3 + \dots$$

also

$$f(z) = \sum_{w \in \mathbb{Z}} \omega \text{ enumerates}$$

$$\mathbb{Z} = \{1, z, z^2, \dots\}$$

and

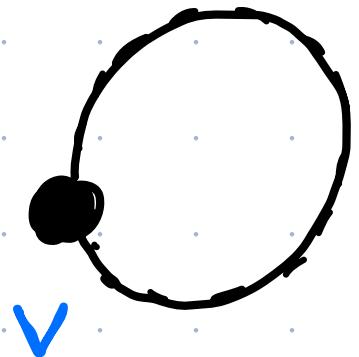
$$(1 - z)^{-1} = f(z) = \sum_{w \in \mathbb{Z}} \omega$$

"realization"

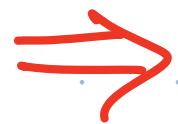
for f

enumeration
function for \mathbb{Z} .

graph



\mathbb{Z}



walk generating function

$$f(z) = 1 + z + z^2 + z^3 + \dots$$

also

$$f(z) = \sum_{w \in \mathcal{J}} \omega \text{ enumerates}$$

$$\mathcal{J} = \{1, z, z^2, \dots\}$$

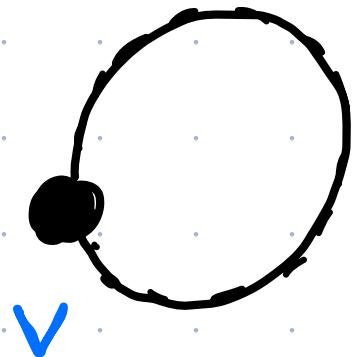
and

$$(1 - z)^{-1} = f(z) = \sum_{w \in \mathcal{J}} \omega$$

"realization"
for f

enumeration
function for \mathcal{J} .

graph



walk generating function

$$f(z) = 1 + z + z^2 + z^3 + \dots$$

also

$$f(z) = \sum_{w \in \mathcal{J}} \omega \text{ enumerates}$$

$$\mathcal{J} = \{1, z, z^2, \dots\}$$

and

$$(1 - z)^{-1} = f(z) = \sum_{w \in \mathcal{J}} \omega$$

"realization"
for f

enumeration
function for \mathcal{J} .

Plan For Talk

- Develop an interesting example
Dyck language
- Introduce graph structure
- Use matrix positivity to get a realization
- State a result about numerical radius

A More INTERESTING EXAMPLE

Consider the alphabet

$$\mathcal{A} = \{ [,] \},$$

and \mathcal{D} the set of balanced brackets

$$[[]] \in \mathcal{D}$$

$$[[]] \notin \mathcal{D}$$
 unequal #'s.

$$[]] [\notin \mathcal{D}$$
 too many] before].

A More INTERESTING EXAMPLE

Consider the alphabet

$$\mathcal{A} = \{ [,] \},$$

and \mathcal{D} the set of balanced brackets

$$[[]] \in \mathcal{D}$$

$$[[] \notin \mathcal{D}$$

unequal #'s.

$$[]] [\notin \mathcal{D}$$

too many] before].

DYCK LANGUAGE

\mathcal{D} is called the Dyck language.

\mathcal{D} has a natural involution:

$$[^* =].$$

Let $z = [$, $w =]$

and $z^* = w$.

then $([[] [[]]])^*$
 $= (z z w z z w w w)^* = z z z w w z w w$.

DYCK LANGUAGE

\mathcal{D} is called the Dyck language.

\mathcal{D} has a natural involution:

$$[^* =].$$

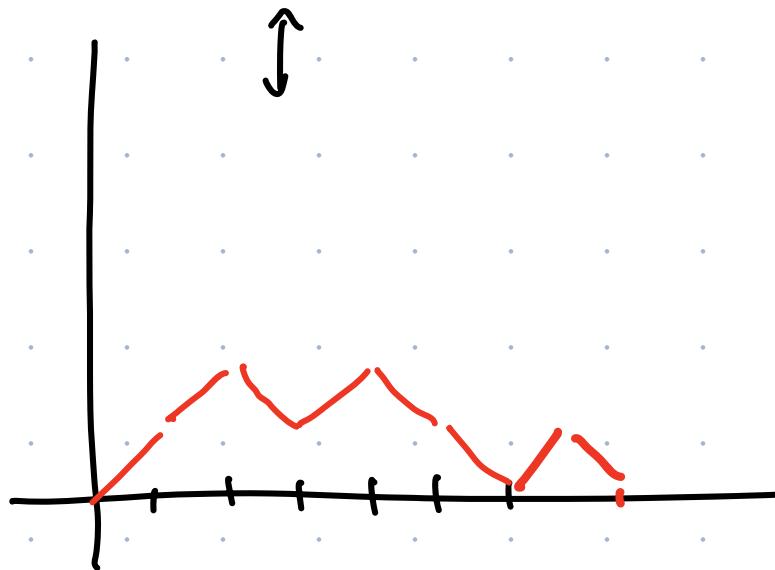
Let $z = [$, $w =]$

and $z^* = w$.

then $([[] [[]]])^*$
 $= (z z w z z w w w)^* = z z z w w z w w$.

Dyck Paths

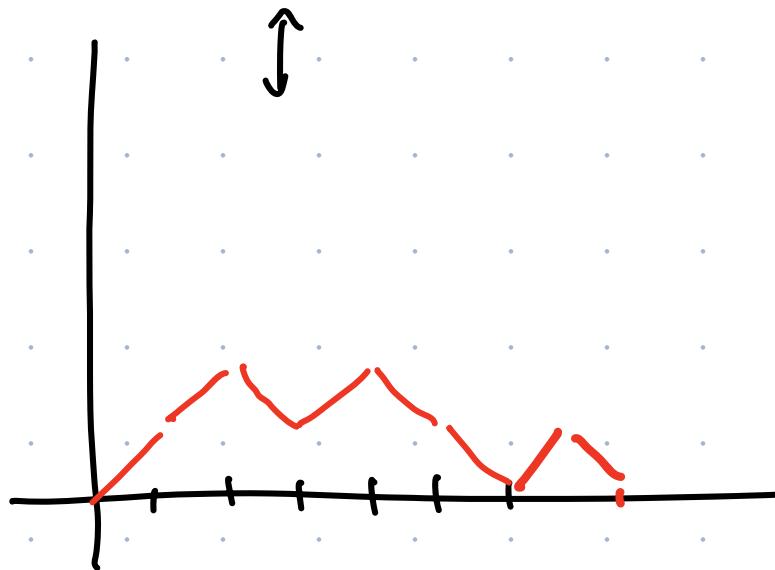
z z w z w w z w



- irreducible if only touch x-axis at beginning and end.
- recursive construction

Dyck Paths

ZZWZWWZW



- irreducible if only touch x-axis at beginning and end.
- recursive construction

STRUCTURE OF DYCK WORDS

If $w_1 = z z w z z w w w \in \mathcal{D}$,

then $w_2 = w_1^* = z z z w w z w w \in \mathcal{D}$.

\mathcal{D}

is closed under involution.

A formal language \mathcal{J} is called self-adjoint
if \mathcal{J} is closed under involution

STRUCTURE OF DYCK WORDS

If $w_1 = z z w z z w w w \in \mathcal{D}$,

then $w_2 = w_1^* = z z z w w z w w \in \mathcal{D}$.

\mathcal{D}

is closed under involution.

A formal language \mathcal{J} is called self-adjoint if \mathcal{J} is closed under involution

STRUCTURE OF DYCK WORDS

If $w_1 = z z w z z w w w \in \mathcal{D}$,

then $w_2 = w_1^* = z z z w w z w w \in \mathcal{D}$.

\mathcal{D}

is closed under involution.

A formal language \mathcal{J} is called self-adjoint if \mathcal{J} is closed under involution

STRUCTURE OF DYCK WORDS

$$\omega_1 = \underbrace{z w z z}_{\beta^*} \underbrace{w w}_{\alpha}$$

$$\omega_2 = \underbrace{z z z}_{\gamma^*} \underbrace{w w w}_{\alpha}$$

Note: $\alpha^* \alpha = (ww)^* ww = z z w w \in \mathcal{D}$.

$$\begin{aligned} \gamma^* \beta &= z z z w (z w z z)^* \\ &= z z z w w w z w \in \mathcal{D} \end{aligned}$$

A self-adjoint language \mathcal{J} is Pythagorean if

$\gamma^* \alpha \in \mathcal{J}$ and $\beta^* \alpha \in \mathcal{J}$ imply $\alpha^* \alpha \in \mathcal{J}$ and
 $\gamma^* \beta \in \mathcal{J}$.

STRUCTURE OF DYCK WORDS

$$\omega_1 = \underbrace{z w z z}_{\beta^*} \underbrace{w w}_{\alpha}$$

$$\omega_2 = \underbrace{z z z}_{\gamma^*} \underbrace{w w w}_{\alpha}$$

Note: $\alpha^* \alpha = (ww)^* ww = z z w w \in \mathcal{D}$.

$$\begin{aligned} \gamma^* \beta &= z z z w (z w z z)^* \\ &= z z z w w w z w \in \mathcal{D} \end{aligned}$$

A self-adjoint language \mathcal{J} is Pythagorean if

$\gamma^* \alpha \in \mathcal{J}$ and $\beta^* \alpha \in \mathcal{J}$ imply $\alpha^* \alpha \in \mathcal{J}$ and
 $\gamma^* \beta \in \mathcal{J}$.

STRUCTURE OF DYCK WORDS

$$\omega_1 = \underbrace{z w z z}_{\beta^*} \underbrace{w w}_{\alpha}$$

$$\omega_2 = \underbrace{z z z}_{\gamma^*} \underbrace{w w w}_{\alpha}$$

Note: $\alpha^* \alpha = (ww)^* ww = z z w w \in \mathcal{D}$.

$$\begin{aligned} \gamma^* \beta &= z z z w (z w z z)^* \\ &= z z z w w w z w \in \mathcal{D} \end{aligned}$$

A self-adjoint language \mathcal{J} is Pythagorean if

$\gamma^* \alpha \in \mathcal{J}$ and $\beta^* \alpha \in \mathcal{J}$ imply $\alpha^* \alpha \in \mathcal{J}$ and
 $\gamma^* \beta \in \mathcal{J}$.

COMPLETABLE WORDS

$$\alpha = ww$$

$$\beta = wwzw$$

$$\gamma = zwzw$$

These words can be completed to form a word in \mathcal{D} .

$$(\beta^* \alpha, \gamma^* \alpha, \beta^* \gamma \in \mathcal{D})$$

Let \mathcal{Y} be the set of all words in \mathcal{A} .

the set of completable words (ellipses)
for $\mathcal{J} \subseteq \mathcal{Y}$ is

$$E_{\mathcal{J}} = \{ \alpha \in \mathcal{Y} : \exists \beta \in \mathcal{Y} \Rightarrow \beta^* \alpha \in \mathcal{J} \}$$

COMPLETABLE WORDS

$$\alpha = ww$$

$$\beta = wwzw$$

$$\gamma = zwzw$$

These words can be completed to form a word in \mathcal{D} .

$$(\beta^* \alpha, \gamma^* \alpha, \beta^* \gamma \in \mathcal{D})$$

Let \mathcal{Y} be the set of all words in \mathcal{A} .

the set of completable words (ellipses)
for $\mathcal{J} \subseteq \mathcal{Y}$ is

$$E_{\mathcal{J}} = \{ \alpha \in \mathcal{Y} : \exists \beta \in \mathcal{Y} \Rightarrow \beta^* \alpha \in \mathcal{J} \}.$$

EQUIVALENCE IN E_g

DEF:

$\alpha, \beta \in E_g$,
 $\alpha \cong \beta$ if $\beta^* \alpha \in J$.

THM: If J is Pythagorean,

\cong is an equivalence relation

GRAPH STRUCTURE ON $E_{\mathcal{D}}$.

$$E_{\mathcal{D}} = \{e, w, zw, ww, zww, wzw, www, \dots\}.$$

Draw a z -edge between α and β if
 $\beta^* z^* \alpha \in \mathcal{D}$.

For example,

as $(wzw)^* z^* (zw) = zwzwzw \in \mathcal{D}$
and $(zw)^* w^* (wzw) = zwzwzw \in \mathcal{D}$.

GRAPH STRUCTURE ON $E_{\mathcal{D}}$.

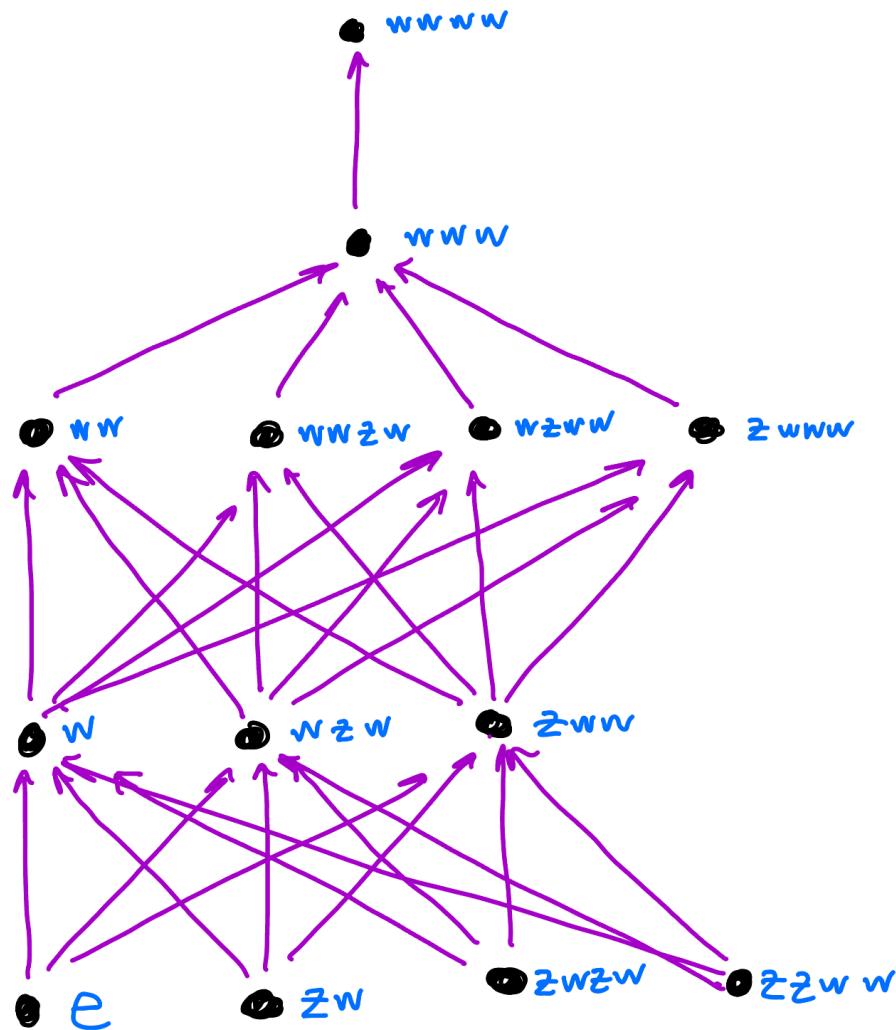
$$E_{\mathcal{D}} = \{e, w, zw, ww, zww, wzw, www, \dots\}.$$

Draw a z -edge between α and β if
 $\beta^* z^* \alpha \in \mathcal{D}$.

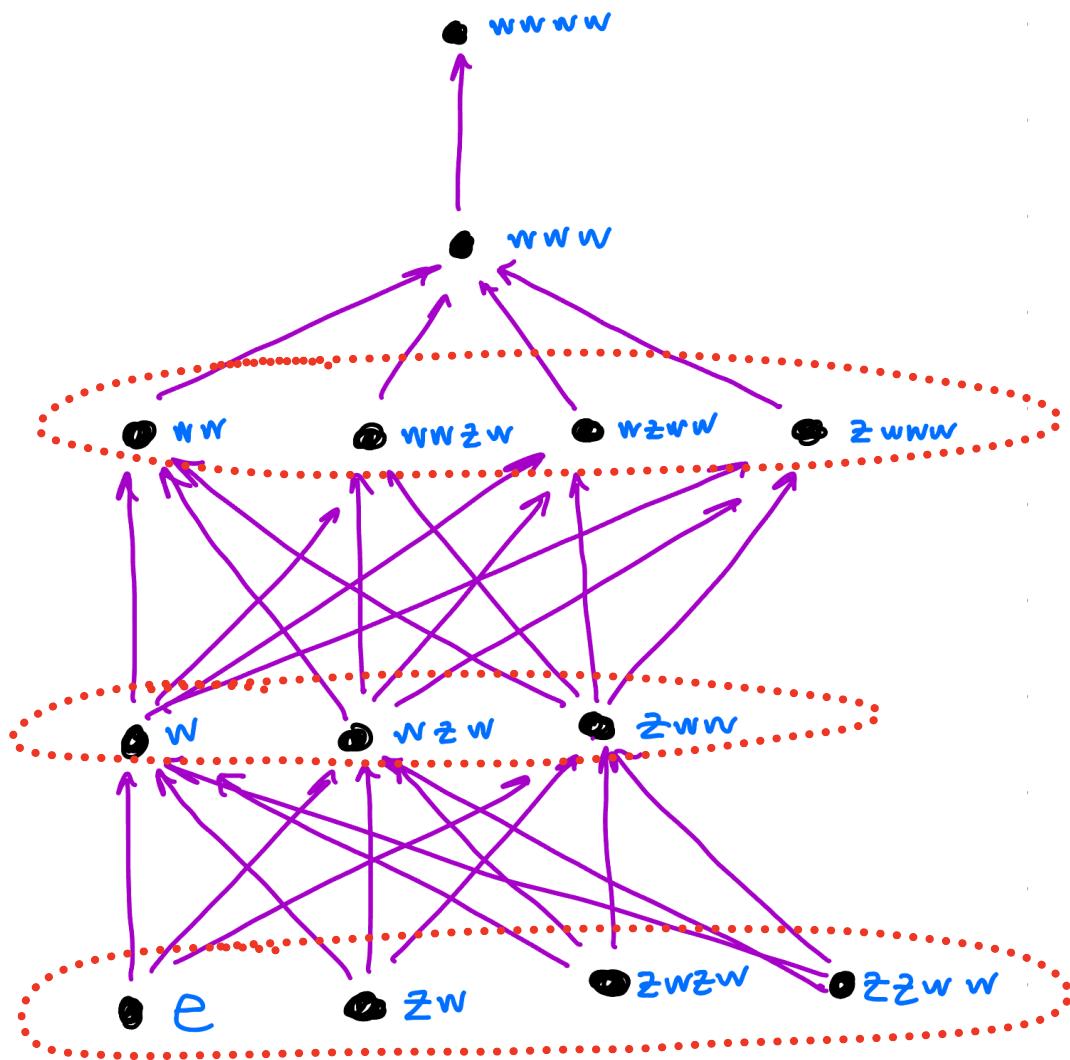
For example,

as $(wzw)^* z^* (zw) = zwzwzw \in \mathcal{D}$
and $(zw)^* w^* (wzw) = zwzwzw \in \mathcal{D}$.

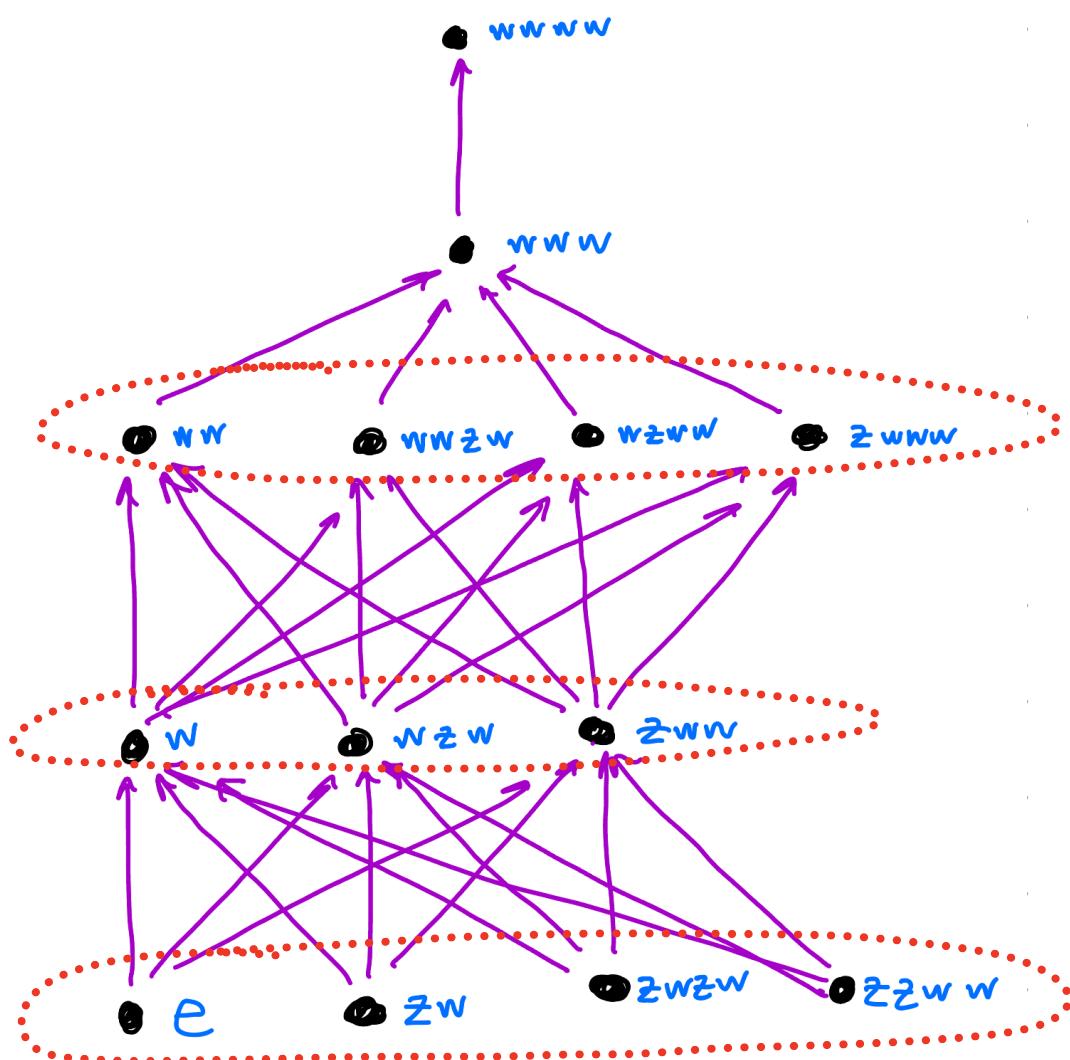
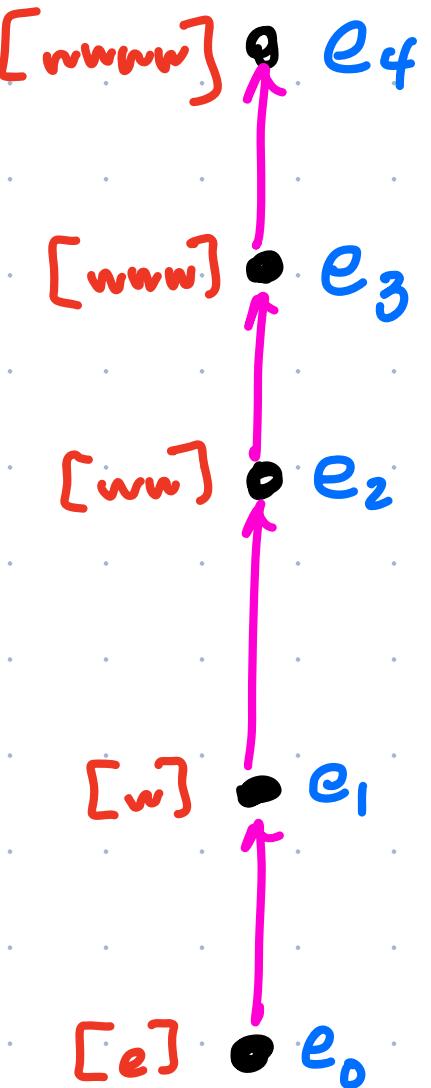
EXAMPLE SUBGRAPH OF E_2 .



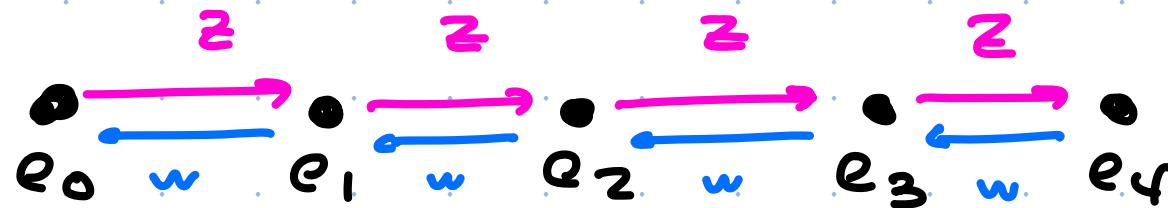
EXAMPLE SUBGRAPH OF E_2 .



EXAMPLE SUBGRAPH OF E_2 .



GRAPH WALKS AND ENUMERATION



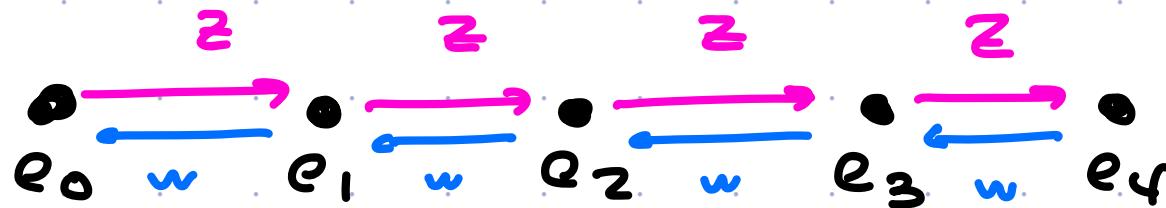
Every walk beginning and ending at e_0 has weight $w \in \mathbb{D}$.

Example: $e_0 \xrightarrow{z} e_1 \xrightarrow{z} e_2 \xrightarrow{w} e_1 \xrightarrow{z} e_2 \xrightarrow{w} e_1 \xrightarrow{w} e_0$

$$\text{So } f(z, w) = \sum_{w \in \mathbb{D}} w = e + 2w + 2z w w + \dots$$

is a walk-generating function

GRAPH WALKS AND ENUMERATION



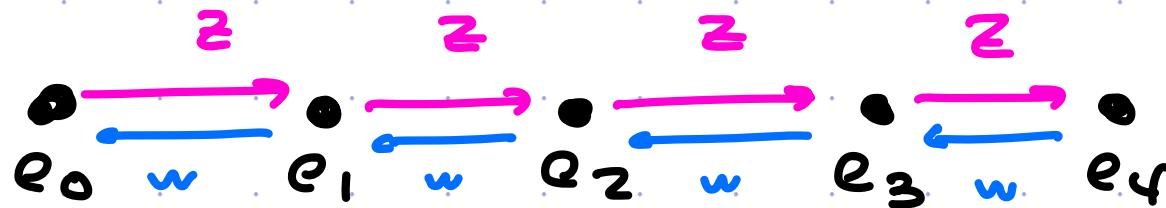
Every walk beginning and ending at e_0 has weight $w \in \mathbb{D}$.

Example: $e_0 \rightarrow e_1 \rightarrow e_2 \rightarrow e_1 \rightarrow e_2 \rightarrow e_1 \rightarrow e_0$

$$\text{So } f(z, w) = \sum_{w \in \mathbb{D}} w = e + 2w + z^2 w w + \dots$$

is a weighted walk-generating function

GRAPH WALKS AND ENUMERATION



Every walk beginning and ending at e_0 has weight $w \in \mathbb{D}$.

Example: $e_0 \xrightarrow{z} e_1 \xrightarrow{z} e_2 \xrightarrow{w} e_1 \xrightarrow{z} e_2 \xrightarrow{w} e_1 \xrightarrow{w} e_0$

$$\text{So } f(z, w) = \sum_{w \in \mathbb{D}} w = e + z w + z z w w + \dots$$

is a weighted walk-generating function

ENUMERATING MATRIX FOR \mathcal{D} .

$$C = [1_{\mathcal{D}} [\beta^* \alpha]]_{\alpha, \beta \in E_{\mathcal{D}}}.$$

$$= \begin{bmatrix} & 1 & w & zw & \underline{zww} & wzw & \dots \\ 1 & 1 & 0 & 1 & 0 & 0 & \dots \\ w & 0 & 1 & 0 & 1 & 1 & \dots \\ z & 1 & 0 & 1 & 0 & 0 & \dots \\ zw & 0 & 1 & 0 & 0 & 1 & \dots \\ zww & 0 & 0 & 0 & 0 & 0 & \dots \end{bmatrix}$$

Positivität

$C = [1_{\mathcal{J}}(\beta^* \alpha)]_{\alpha, \beta}$ is a sort of Hankel matrix

for $f = \sum_{w \in \mathcal{Y}} w$.

C is self-adjoint since \mathcal{J} is self-adjoint.

LEMMA: $C = [1_{\mathcal{J}}(\beta^* \alpha)]_{\alpha, \beta \in \mathcal{Z}} \geq 0$

iff

\mathcal{J} is Pythagorean.

Positivität

$C = [1_{\mathcal{Y}}(\beta^* \alpha)]_{\alpha, \beta}$ is a sort of Hankel matrix

for $f = \sum_{w \in \mathcal{Y}} w$.

C is self-adjoint since \mathcal{Y} is self-adjoint.

LEMMA: $C = [1_{\mathcal{Y}}(\beta^* \alpha)]_{\alpha, \beta \in \mathcal{Z}} \geq 0$

iff

\mathcal{Y} is Pythagorean.

Positivität

$C = [1_{\mathcal{J}}(\beta^* \alpha)]_{\alpha, \beta}$ is a sort of Hankel matrix

for $f = \sum_{w \in \mathcal{J}} w$.

C is self-adjoint since \mathcal{J} is self-adjoint.

LEMMA: $C = [1_{\mathcal{J}}(\beta^* \alpha)]_{\alpha, \beta \in \mathcal{J}} \geq 0$
iff

\mathcal{J} is Pythagorean.

MATRIX CONVEXITY

$$\mathcal{D} = \{ A = (A_1, \dots, A_d) : \|A\| \leq r, A_i^* = A_i \}. \quad (\text{convex free set})$$

DEF: Suppose $f: \mathcal{D} \rightarrow \text{self-adjoint.}$ is an nc-function.

f is matrix convex if

$$f\left(\frac{A+B}{2}\right) \leq \frac{f(A) + f(B)}{2} \quad \text{for all } A, B \in \mathcal{D}.$$

LEMMA: f is matrix convex if and only if

$$C = [c_{\beta^\alpha}]_{\alpha, \beta} \geq 0.$$

THM: Let \mathcal{J} be a formal language with

$$f = \sum_{w \in \mathcal{J}} \omega.$$

Then

\mathcal{J} is Pythagorean

iff

$$C = [1_{\mathcal{J}}(\beta^\alpha)]_{\alpha, \beta} \geq 0$$

iff

$$f = \sum_{w \in \mathcal{J}} \omega \text{ is matrix convex.}$$

Roger
ROAD

A BUTTERFLY REALIZATION

Let $\text{irr } \mathcal{D}$ be the irreducible Dyck words.

Let $f(z, w) = \sum_{\omega \in \text{irr } \mathcal{D}} \omega = 1 + zw + zzw^t \dots$

Then

$$f(z, w) = (e_0^* \otimes 1)(I - S \otimes z - S^* \otimes w)(e_0 \otimes 1)$$

where $S: e_k \mapsto e_{k+1}$

$$S^*: e_{k+1} \mapsto e_k \text{ and } S^*(e_0) = 0.$$

A BUTTERFLY REALIZATION

Let $\text{irr } \mathcal{D}$ be the irreducible Dyck words.

Let $f(z, w) = \sum_{\omega \in \text{irr } \mathcal{D}} \omega = 1 + zw + zzw^t \dots$

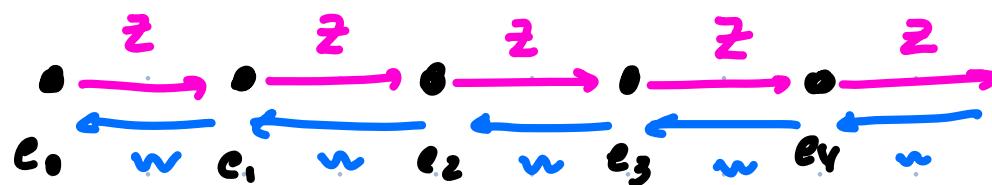
Then

$$f(z, w) = (e_0^* \otimes 1)(I - S \otimes z - S^* \otimes w)(e_0 \otimes 1)^{-1}$$

where $S: e_k \mapsto e_{k+1}$

$$S^*: e_{k+1} \mapsto e_k \text{ and } S^*(e_0) = 0.$$

A BUTTERFLY REALIZATION



$\{e_k\}$ is a basis
for $V = \mathbb{F}_D / \equiv$

$$f(z, w) = (e_0^* \otimes 1)(I - S \otimes z - S^* \otimes w)(e_0 \otimes 1)$$

where

$$S: e_k \mapsto e_{k+1}$$

$$S^*: e_{k+1} \mapsto e_k \text{ and } S^*(e_0) = 0.$$

SUMMABILITY

$$= \sum_{w \in \text{int} \mathcal{D}}$$

$$= (e_0^* \otimes 1) (I - S \otimes z - S^* \otimes w)^{-1} (e_0 \otimes 1)$$

1)

Theorem: This relationship holds for all Pythagorean languages.

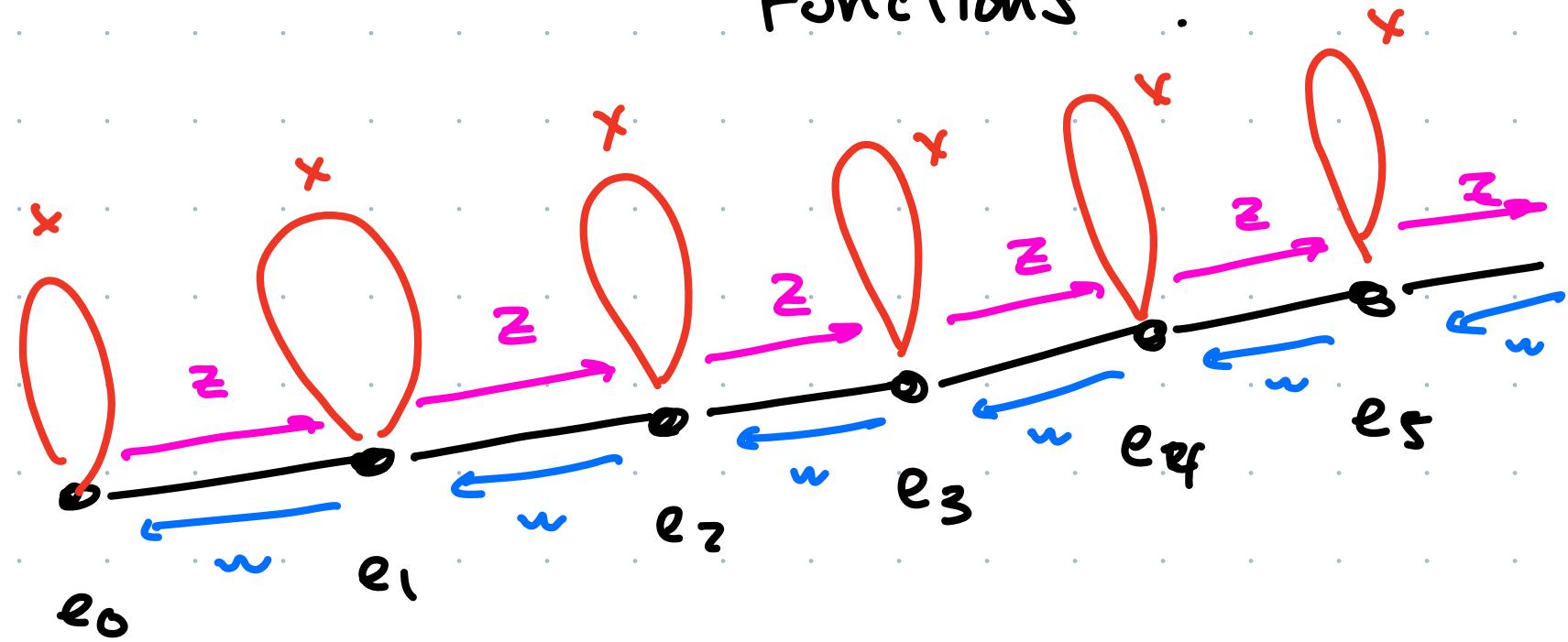
Numerical Radius

let $p_n(z, z^*)$ denote the homogeneous polynomial of degree $2n$ in the irreducible Dyck words.

Theorem: The numerical radius of $\mathbb{Z} \in M_n(\mathbb{C})$ is $\frac{1}{2} \limsup_{n \rightarrow \infty} \|p_n(z, z^*)\|^{1/2n}$

Comments: really a corollary of a result of Ando. we showed $\mathbb{Y} = \mathbb{Z}(\mathbb{I} - \mathbb{Y})^{-1}\mathbb{Z}^*$
 $\Rightarrow \mathbb{Y} = \sum_{w \in \text{irrD}} \omega$.

OTHER "GRAPHICAL Functions"?



walks e_0 to e_0 are Motzkin paths.

$$z^* = w, \quad x^* = x.$$

Thank
You.