Math 350 (Tully-Doyle)

Homework 6

1 Functions/Options Learned

2

’ Timing ‘ AbsoluteTiming ‘ DownValues ‘ RecursionlLimit

Problems

From electronic text

1.

12.

Problem 11.1 (This problem uses a
technique called memoization, which is
not explained in the text in any way.
This concept is explored further in the
lesson associated with the homework.)

Exercise 11.1 (Mimic what the book did
and use memoization on this problem.
Generate at least 15 distinct primes us-
ing this recurrence.)

Problem 11.2 (This problem also uses
memoization.  Additionally, there is
a typo, it should read “Check that
t(100)=10000.")

Problem 11.3

. Problem 11.4
. Exercise 11.2

. Problem 11.5 (This problem also uses

memoization.)

From lesson on memoization
8. Exercise 1
9. Exercise 2
10. Exercise 3

11. Exercise 4

Quicksort (see http://en.wikipedia.org/wiki/Quicksort) is a divide and conquer
algorithm for sorting a list of numbers. Quicksort first divides a large list into two
smaller sublists: the “small” elements and the “big” elements and then recursively
sorts the sublists. Here are the steps involved in the quicksort algorithm:

e Pick an element, called a pivot, randomly from the list.

e Of the remaining non-pivot elements, create two new sublists, a list of numbers
smaller than the pivot element and a list of numbers greater than the pivot ele-

ment.

e Recursively apply the above steps to the sublists described above separately and
return the list obtained by joining the outputs of the the recursive calls with the

pivot element in the correct order.

(a) Create a recursive function called Quicksort [L_List] using Module that takes a
list L as an input and returns the list in ascending order. You may not use any

built-in sorting operations.

(b) Demonstrate your function on a list of random integers between 1 and 10000 of
length 100 to prove that it works correctly.



13. The partial Schensted insertion algorithm takes a permutation of {1,2,...,n} and
returns a list of lists satisfying the property that if you were to stack the lists on top
of each other, they would be increasing in both rows and columns. It is accomplished
by starting with the empty list and then successively inserting each element of the
permutation (in order) into the list using row-insertion. The following describes how
row-insertion works for inserting an integer z into the list L.

e If L is empty, return {{z}}.

e If z is larger than every element in the first list of L, then return the list obtained
by appending x to the first list of L.

e If there exists a y in the first list of L such that y > x, choose the smallest such
y and return the list whose first element is the same as the first of L except with
x in place of y, and whose remaining lists are the output of inserting y into what
remains after removing the first list from L (which could be empty).

To ensure that you understand how this works, compute the partial Schensted insertion
algorithm by hand on the permutation {2, 1,3,6,5,7,10,8,9,4}. The answer should be
{{1,3,4,7,8,9},{2,5,10}, {6} }, which you could view using TableForm (shown below)
to see how it is increasing in rows (from left to right) and in columns (from top to
bottom).

13 4 7 8 9
2 5 10

6

(a) Implement the partial Schensted insertion algorithm by writing a function called
Schensted [P List] that takes a permutation P of {1,2...,n} as an input. This
function should make use of the built-in function Fold as well as a recursive
function (written by you) called RowInsert[L List,x Integer] that performs
the row insertion of x into L described above.

(b) Demonstrate your function on the permutation {2,8,7,12,6,1,11,4,5,3,9,10} to
prove that it works correctly.

(¢) For each 1 < i < 6, how many permutations of {1,2,...,6} result in a list of
length ¢ under this algorithm? Check out the function Tally or Counts.



14.

15.

Extend your code from Exercise 7?7 to perform the full Schensted algorithm, see
http://en.wikipedia.org/wiki/Robinson-Schensted_correspondence. The full
Schensted algorithm will take a permutation of {1,2,...,n} and return a pair of lists
of lists. The first list in the pair is precisely the output of the partial Schensted algo-
rithm described in Exercise ?7?7. The second list of lists will have the same “shape” as
the first and be filled with the integers {1,2,...,n} corresponding to the order in which
the “cells” are created as you successively insert each element of the permutation us-
ing row-insertion. For example, we saw that the permutation {2,1,3,6,5,7,10,8,9,4}
mapped to to {{1,3,4,7,8,9},{2,5,10},{6}} under the partial Schensted algorithm.
Under the full Schensted algorithm, the image would be

{{{1,3,4,7,8,9},{2,5,10},{6}}, {{1,3,4,6,7,9},{2,5,8}, {10} } } .

Here is what they look like using TableForm.

134789 134679
2 5 10 .2 5 8
6 10

Note that both lists have the same shape and are increasing in both rows and columns
(this will always be the case). Implement the full Schensted insertion algorithm by
writing a function FullSchensted[L List]. Test your function by implementing the
full Schensted algorithm on the permutation {5,12,6,7,4,2,8,11,10,13,15,3,14,9,1}.

Extra Credit: It turns out that the full Schensted algorithm is a bijection between
permutations of {1,2,...,n} and pairs of lists consisting of the integers {1,2,...,n}
of the same shape which are increasing in both rows and columns. Thus, the Schen-
sted algorithm is invertible. Implement the inverse mapping by writing a function
InverseSchensted [P List,Q List] that will take a pair of lists {P,Q} and return
the permutation whose image under the full Schensted algorithm is {P,Q}. Test your
function by computing the inverse Schensted algorithm of the pair

{{{1,2,4,8,11},{3,6,7,10},{5,9}},{{1,4,6,9,11},{2,5,7,10}, {3, 8} } }

or in TableForm,

124 8 11 1 46 9 11
3 6 7 10 ,2 5 7 10
5 9 3 8



