1 Functions Learned

PrimeQ	Sin	Cos	Tan	Sqrt	N
Log	Exp	ArcSin	ArcCos	ArcTan	Simplify
FullSimplify	RootReduce	FactorInteger	PrimePi	Sum	Binomial
Mod	Quotient	Expand	Factor	Together	Apart
TrigExpand	Random	Slider	Manipulate	Dynamic	LCM
Fibonacci	Divisible	First	Last	Drop	Take
Rest	Most	Flatten	Range	Table	Print
RandomInteger	Map(/@)	Select	Length	IntegerDigits	Reverse
FromDigits	OddQ	Divisors	Prime	Union	Product
EvenQ					

2 Problems

From electronic text

- 1. Problem 1.1 (Check out the function called RootReduce.)
- 2. Exercise 1.1
- 3. Problem 1.2
- 4. Problem 1.3 (The book actually computes the probability that a randomly chosen 13-digit number will be prime. Fix it and compute the correct proability.)
- 5. Exercise 1.2
- Exercise 1.3 (You need only do this for one number; pick it to be at least 20. Check out the function Range and Apply.)
- 7. Exercise 1.4
- 8. Problem 1.4
- 9. Problem 1.5
- $10.~{\rm Exercise}~1.5$
- 11. Exercise 1.6

13.	Exercise 1.7
14.	Problem 1.7
15.	Problem 1.8
16.	Problem 1.9 (Or this for $1 \leq m$ 13 instead of $m, n \leq 100$ as just ridiculous.)

12. Problem 1.6

- 17. Problem 2.1
- 18. Exercise 2.1
- 19. Problem 2.2
- 20. Problem 2.3
- 21. Exercise 2.2
- 22. Problem 3.1
- 23. Problem 3.2
- 24. Problem 3.3
 - 25. Problem 3.4
 - 26. Problem 3.6
- 5 27. Exercise 3.1
- cise 1.6 28. Problem 3.7
- 29. Problem 3.8 30. Exercise 3.2 31. Exercise 3.3 32. Problem 3.9 nly do 33. Exercise 3.4 $,n \leq$ 34. Exercise 3.5 \leq 1 that's 35. Problem 3.10 36. Problem 3.11 37. Exercise 3.6 38. Exercise 3.7 39. Problem 3.12 40. Exercise 3.8 41. Problem 3.13 42. Problem 3.14 43. Exercise 3.9 44. Exercise 3.10 45. Problem 3.15
 - 46. Problem 3.16
- 47. Problem 3.17

Additional problems

- 48. Compute and/or simplify the following.
 - (a) arctan(2 √3).
 (b) ⁵²₅ (the number of possible poker hands.)
 (c) tan(arcsin(x)).
 (d) e^{7 ln(3)}.

49. Does the equality $\tan(x) + \sec(x) = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$ hold for all x?

50. Consider the sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = n^2 + n + 1$.

- (a) Create a list containing the 121st through 1000th terms of $\{a_n\}$ and store it as a local variable called myList.
- (b) What is the 600th term in myList?
- (c) Using a function, extract the first and last elements of myList.
- (d) Using a function, extract the first 20 elements and the last 20 elements of myList.
- (e) Using a function, extract the elements of myList that are prime.
- (f) How many elements of myList are prime?
- (g) What are the smallest and largest primes in myList?
- 51. Define a sequence $\{h_n\}_{n=1}^{\infty}$ by $h_n = p_1 p_2 \cdots p_n + 1$ where p_i is the *i*-th prime number. Verify that the factorization of h_n contains a prime larger than p_n for at least 10 different values of n. Based on this evidence, you might suspect that h_n always contains a prime factor larger than p_n for all n. This is in fact true and this construction is used in Euclid's famous proof of the infinitude of primes. Also, the function **Product** may be useful.
- 52. Define a function called DigitSum that sums the digits of an integer and use it to
 - (a) sum up the digits of 2^{60} .
 - (b) create a list of digit-sums of the first 100 integers.
- 53. Using a pure function that tests whether a particular integer is a palindrome,
 - (a) estimate the probability that a random three-digit integer is a palindrome by testing 300 random three-digit integers.
 - (b) compute the actual probability that a random three-digit integer is a palindrome.
 - (c) compute the error in your estimate from (a).
- 54. Generate data and conjecture the truth value of the following propositions involving Fibonacci numbers. Here, f_n denotes the *n*-th Fibonacci number.
 - (a) $f_n^2 + f_{n+1}^2 = f_{2n+1}$.
 - (b) there exists is an integer between 0 and 9 that never appears in the ones digit of $f_n f_{n+1}$.
 - (c) $\sum_{i=1}^{n} f_{2i-1} = f_{2n} 1$ (the function Sum may be useful).